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ON THE THEORY OF FRACTURE OF SOLIDS SU?MITTED TO POWERFUL
PULSED ELECTRON BEAMS

A. A. BORZYKH and G. P. CHEREPANOV

The irradiation of solids by pulsed (of nanosecond periodicity) relativisticelectron
beams (also by powerful optic laser beams) led to the discovery of a new type of
fracture /1— 14/, entirely different from viscous or brittle fracture type produced
by mechanical loads /15/. A theory based on the assumption of formation in a solid
subjected to such irradiation of clusters of electrons that act as “knives" or "wedg-
es” cutting the solid. Basic model problems of this theory are formulated,

Collective relativistic interactions of faster-than-light electrons of a beam in a medium
are considered in Sect.l, where existence of self-compaction of beams of fast moving charged
particles is also demonstrated. An exact solution of the steady plane dynamic problem of the
elasticity theory of the infinitely thin wedge moving at supersonic velocity (a solution sim-
ilar to that of the gasdynamic problem of flow over a wedge /16/) is derived in Sect.2. It
is then used in Sect.3 for determining the unsteady motion of a wedge of finite length. A
simple estimate of the fracture dimension is cbtained for high initial wedge velocity.

The first results of investigations on fracturing semiconductor crystals by intensive high
energy electron beams were published by Oswald in 1966 /1/. Such electron beams of a density
of 10iA/m2 are generated in electron guns at voltages up to 10 MV with pulses at 10™°+1077s and
frequencies of hundreds of Hertz. Subsequent works disclosed and investigated the fracturing
of such diverse materials as metals, dielectrics, ion crystals, glass, and various rocks.

Analysis of experimental results made it possible to establish the following particularit-
ies of the fracture process: a) fracturing of all materials (including the highly plastic
under mechanical loads) is of the "brittle" type, i.e. the specimen appears to have been split
by a crack without any trace of permanent set; b) initial microdefects and cracks (even fair-
ly large) do not affect the fracture threshold, the beam intensity (the density of absorbed
energy) at which splitting of the specimen takes place; c) the fracture threshold — a comnstant
of the material~-is the minimum irradiation intensity capable of inducing fracture; d) the
crack that fractures the specimen propagates at supersonic velocity, and e) the fracture
threshold is independent of temperature and purity of crystals, as well as of the energy of
electrons in the beam (in the range of 0.5= 10 MV). These effects are entirely extraneous to
the usual viscous, brittle, or mixed mechanical fracture. So far there is no theoretical ex-
planation of this phenomenon.

The problem of splitting a brittle body by a thin wedge of arbitrary form was considered
in /17/ whose most important conclusion was that the propagation velocity of cracks ahead of
the wedge cannot exceed the Rayleigh wave velocity (always lower than the velocity of long-
itudinal waves). Later, the motion of a thin wedge at a velocity higher than the Rayleigh one
but lower than that of transverse waves was investigated in /18/. It was found that the wedge
was in contact with the body along some finite segment of its frontal part, while its remain-
ing surface was free. Supersonic crack /propagation/ under gigantic pulses of irradiation by
electron and laser beams, evidently presupposes the existence of some macroscopic objects which
cut the body at supersonic velocity. It is reasonable to assume that in both cases (in what
follows only high-energy pulsed electron beams are considered) there is some physical mechan-
ism that induces the formation of clusters of solid body electron or electron-proton plasma,
which act as "knife edges" cutting the body. (According to certain estimates /12,19/ the mean-
square propagation velocity of solid-body plasma fluctuations is of the order of 10* m/s.)

In the case of electyon irradiation one of such mechanisms can be the self-compaction of fast—
er-than-light electrons, which comes into existence after the initial beam density has reach-
ed a certain value.

This hypothesis is accepted below, since it makes possible the explanation and understand-
ing the indicated distinctive features of fracture by electron beams. The laws of motion of
the fracturing plasma wedge in the solid are, then, determined on very rough assumptions that
the wedge is absolutely rigid and the body perfectly elastic (irreversible deformations at the
crack edges cannot develop at high velocities), homogeneous, and isotropic. The resulting
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mathematical problem is similar to that of the flow of a supersonic gas over a thin wedge,
except that it is somewhat more complicated, as will become subsequently clear, owing to the
presence of two wave equations in the system.

1. Collective relativistic interactions in electron beams. The proper electro-
magnetic £field of an electron with a charge e << 0 moving in a medium along axis z at constant velocity
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where E, E, E, B;, By, B, are components of the electromagnetic fisld {SI} in the system of
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and permittivity of the medium, and M is the relativistic Mach number. Field (1.1), (1.2)
lies in the Mach cone of the faster-than-light electron 2z > M%¥2 z.«'() outside which the
electron has no proper field.

Dissipation of the electron energy (and its retardation) is the rasult of its field in-
teraction with the medium electromagnetic field (braking radiation losses and exgitation of
bound electrons of the sunsx:anee;; wave losses at the Mach cone front {C‘IIB‘.’.‘EBKOV radiation) Fs
and of the interaction of its field with the electromagnstic field of other electrons of the
beam {collective interaction). At high velocities the first two kinds of losses aye the same
for all electrons of the beam and do not affect the relative position of electrons., Since
the relative position of electrons in the beam is, thus, determined by collective interactions,
only they are considered below.

Using the method of invariant T -integrals {as was done in the case of the slower-than-
light elecotron in the external field /21/), and {1.1) and {1.2) it is possible, in the case
of the faster-than-light slectron in the external field E, = {Ey), By = {B,;}, to obtain

Ti=eEy (i=1,2,2 1.3

where I'; i% the irrewvergible work of the external field for a unit length translatiop of the
electron along the i-th axis., When in the external field B, =0, I'| are components of the
force acting on a charge. This cannot be taken as self-evident in the case of fastey-than—
light velocities; the method of T -integrals which represent a form of notation of the gen~
ersl laws of conservation, enables us to provide a strict substantiation of the above formula.

Note that the external field E, B, is considered in its proper coordinate gystem attach-
ed to thsa moving electyron.

Let in the trail (the Mach cona) of the leading electron e, moving in the medium at a
faster-than-light velocity V >>a, be another electrmn e, for which the externmal field is the
field (1.1} {1.2) of elactron e, Blectron e, is obviously always attracted to the leading
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electron, i.e. .= ¢,Bp: > 0. When two electrons move along the z~axis, the attraction is

where 2 is the distance between the electrons
Note that, since sladtron e inteyacts

is unaffected by electron e,.
A simple estimate of the behavior of a relativistic system of electrons can be obtained
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which at the initial instant of time are equally spaced at intervals 5. 3 simple analytic
solution can be cbtained for the determination of motion of the single electron & in the
field of electron e, » In the one~dimensional system forces can act only aleong ithe chain

axis. wWe denote by fms the force exerted by the n~th electron on the m-thelgctron (n<mh.
The resultant of all forces acting on the m-th electyron is
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Using the estimate of /22/ for the sum in the right-hand side of this equality we obtain
Fy (B Fpp (b)) < 713F, () / 6

which shows that Fm (b} differs only little from F (3 for any m.
The relativistic differential equation of electron motion is according to (1.4) in the
attached reference system of the form /23/
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Its solution with the following initial conditions for =0:2= —b,dz:dt =0 vyields
. . 2(172/0% - 1
tK't = [—bz (2 + B)]¥: & b aresin {(z + b) / b}, K= _————-———-»u:,m(”“’a_ l"ll”) (1.6)

Let us estimate the characteristic time 7T in which electron e; converges with ¢y {a
compact system of two electrons is formed in which quantum interactions that are not account-
ed for in the solid medium model, play the determining part, and the retarding forces due to
radiation of the accelerated electron; the applicability limit of solution (1.6) for the beams
used (in practice) may be roughly estimated using distances of order 10713 m). Setting z =0
we obtain (1.7).
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Note that the gquantities b,¢t and t are considered in the moving electron proper co-
ordinate system. Passing to the laboratory /coordinate/ system using the Lorentz transform
b =b (1 — Ve ' =t (1 — V¥, from (1.7) we obtain

(Tr= s (1.8) .
4t (1 — V221 [12et — (ue)~Y)

The dependence of ' on © = V¥ for some constant pe is shown in Fig.l. It will be
seen that the effect of convergence is the most pronouned in that range of particle velocit-
ies (energies) where the characteristic time 1’ is less than the time of existence of the
directed faster-than~light beam in the medium. When o, = (2p¢ + 3)/ (5pe), the time 1’ reach-
es its minimum value

Cm (br)'/:
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where for electron beams (,, = 6,437-10"2 m~ s. For example, when & ~ 107® m (this is the
order of distances in the applied pulsed electron beams), we obtain 1, ~ 1071° s,

As shown on the simple model, a mechanism of self-compaction exists in relativistic
electron beams in a medium (theoretically this effect holds for any beams of uniformly charg-
ed particles of corresponding energies). Since time T is assumed small in the problem form-
ulation, the effect of that mechanism can make itself felt only in the case of beams of fairly
high initial intensity, i.e. small &’. The initial beam density needed for the formation of
a dense bunch in a dielectric medium (u=1) can in accordance with formula (1.9) be estimat-
ed as

g~ @Y3> Cr2 (1 ~ ey T2 (1.10)

The time I of existence of a beam of faster-than-light electrons in a medium is deter-
mined by two factors, viz. deceleration of electrons to the velocity of light and by the
losses due to excitation and ionization of the substance bound electrens /24/. A more exact
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estimate of critical density in the case of high energies (©>> wn) can be obtained from
formula (1.8).

It should be pointed out that the initial density calculated by formula (1.10) is higher
than the usually attained mean density. However, gince time T is considerably shorter than
the accelerator pulse duration, dimensions of the critical density region may be considerably
smaller than dimensions of the beam. In small volumes large densities can be due to nonuni-
form density distribution (usually considerable /11,14/) in the radial and axial directions,
as well as to the stream of ionized electrons /24/ and to the possibility of large fluctua-
tions in small volumes.

2. Steady supersonic motion of an. infinite wedge. Let an infinitely thin wedge
with an apex angle of 2a move in an elastic medium at constant supersonic velocity v {(Fig.2).
In the system of coordinates zy attached to the wedge the equations of the steady plane
problem of the dynamic theory of elasticity are of the form

Me 2% 3"9. (im1,2: M= 2 1~ ) ad, ab, A, am,
ST \ 1,4 == ci.‘ -— L1 =~ )~ Uy = £ —+ Fm — i, Lvyz‘—é-y—-— Er (2.1)
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where @, and @, are wave potentials, u, and u, are displacements, C.., O,y, and Oygy are
stresses, M; are modified Mach numbers, p is the Lamé constant of the elastic medium, and ¢,

aﬁd Cy are the Ve.LOClCJ.eS of J.ong’ltuulna.L and transverse ELaS\:lC waves,
In terms of wave potentials the velocities of the medium are of the form

(i, 60, 80, { %D, 32D, \ U
ve=—o(1 + G-+ ) ve=—v g — ) (2.3
The general solution of Eq.(2.1) is
D, = @ (z —~ My) + ¥ (z+ M) (2.4)
where ¢; and 1; are arbitrary twice differentiable functions Potentials ®; are determined

aere @ anc Y W

W e i are tery d
in regions bounded by sets of Mach lines z 4+ M;y =0 and the wedge surface. We denote para-
meters of the unperturbed medium|where the displacements and stresses are zero}, by subscnpt

n =l of tha madium hatwanm thae Marh linas M == 0} nd r o M 0 e subs
Uy those of the medium between the Mach lines Z = ”‘19 = { ana T 7oy = U QY SUSS

and those between z -+ M,y =0 and the wedge surface by subscript 2 (Fig.2).
The conditions of conservation of mass and momentum at discontinuities -~ the Mach lines
dote - . apmed o dma dmlea e ae aal vt aem AR wmlaa € vam
A Ll

—are (owing to symmetry) we restrict the analysis to the upper half-plane, form

along z - My =0

Potlor = P1lny (2.5)
Go1 = 011 = Po¥or (Uny — Vpp)r Tor = T1y = Qoo (Woy — W)

and along z + My =
P1Vp2 = Pgl'as (2.6)

Cra — oy = Pyl (Up — Va)y  Trz — Tag = Py (Wi — Way)
where o is the medium density, vx and wni are the components of the medium velocity normal

and tangent to Mach lines (with the normal 1) in region 1, and o and 1 are the
normal and tangent components of the stress vector in area elements with the normal a; in

omponents th

region [.

We express, in conformity with (2.2)—
.

(2.4), the quantities Ui, Wi, O and Ty in terms
cond derivatives rp‘.' and I‘rht'" of potentials

From conditions (2.5) at the discontinuity

of second derivatives £ po 1 . From cor
of z -+ My =0 we obtain

@ = 0, py=pp [T + (1 + M?," (O] (2.7)
(since u = pg&®, the second condition (2.5) is an identity).

From conditions (2.6) on r - M,y = 0 with allowance for (2.7) we obtain

gy = 0. ps =0 (2.8)

smallness of the wedge apex angle has been taken here into account, and the density of the
medium in each of the regions O, 1, 2 was assumed constant.
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It is evident that under conditions (2.7) and (2.8) the displacements are everywhere con=-

tinuous.
The substitution of (2.7) and (2.8) into (2.2) and (2.3) yields

vy = —v 1+ 4 + Ml v, = —v My — ) (2.9)
Oox = p (1 + Mg® — 2M" + 2M,y,"]
Gyy = p IM° — 1" — 2Mpy’}, 04y = M, + (Me* — "]

We recall that in formulas (2.9) z -+ M;y serve as arguments of functions ¥/, and that in
regions 0 it is necessary to set ¥,"=0 and ¢, =0, but ¥, =0 in region 1.
At the wedge surface y -+ 8z = 0 (8 = tg o) the velocities and stresses are of the form

v = —v (1 + 8 [6 4 (My ~+ 8)p" + (M8 — 1)) (2.10)
wy = —v (1 + 8 HMS — " — (M + " — 1]

Gao/p = {{(1 + M,? — 2M%)8% + 4M;8 -+ M2 — 1" -+ 2 (M — 1M, + 8)p,"}(1 + 697!
Taa/p = {2 (M; + 8)M;D — 1)p," +I(My2 — 1)6% — 4M,0 + 1 — M2hy,"Y(1 + 697

where (M; — 1/8)y is the argument of functions v;".
The absence of normal velocity components of the medium on the wedge surface implies in
conformity with (2.10) that

(1 — MBI (May — y/8) — (M, + 8)¢," (Myy — y/6) = 6 (2.11)

The second boundary condition at the wedge surface is generally of the form

Tas = F (wys, 00) (2.12)

where F is a function obtained from experimental data or model concepts. It is, for instance,
possible to assume that Ty == fo,s, where f is the friction coefficient.

Conditions (2.11) and (2.12) enable us to determine functions ;" and +¥,", and completely
solve the stated here problem of determination of the velocity and stress fields (2.9) at super-
sonic motion of the wedge in an elastic medium. It will be seen that in each of regions 1 and
2 the velocity and stress field is piece-wise constant (as in the similar gasdynamical problem
of flow over a wedge /16/). We present the final formulas only for the simplest and important
case, restricting to the minimum the use of data on insufficiently known properties of super-
sonic clusters.

Ignoring friction (F = 0) and restricting the analysis to very small apex angles of the
wedge (8 <€ 1/M,), from (2.9)— (2.12) we obtain

a1 =M% w20 P (M2—1)d .
W= W T e e[ i (2.13)

The velocity and stress fields can be determined by substituting (2.10) into (2.13), which
yields

— ud [(M;2 — 1)3 + 4M,M, 4- 4M,8) —
G2 = W+ O M) » =0 (2.14)

3. The braking of a finite edge in quasisteady approximation. Let a thin wedge-
shaped body of characteristic length L and maximum thickness % = 2L tga = 2L§) move in an
elastic medium. The lateral surface of the wedge interacts along that length with the elastic
medium, while the fracture cavity surface beyond that
length is free (Fig.3). At the initial instant of time

= 0 the wedge-shaped body momentum was P, = mv,, where
vy is the initial velocity, and m and P, are, respect-
ively, the mass and momentum per unit of the wedge width.

Let us consider the supersonic motion of the wedge-
shaped body subjected to the resistance of an elastic med-
ium, disregarding friction forces and the action of the
substance in the cavity. The resistance acting on the
wedge (per unit of width) is

Fig.3 R =26Loy

which in the quasisteady approximation (2.14) yields
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_ 288L {{M,® — 132 - 40 M, -~ AM.5]
A= e T

The solution of the equation of wedge motion mdv'di = R with initial condition ro= g,
at ! =0 1is of the form '

t==m § R-'dv

For the solution in the most important limit case of 363> 1 we have

m 8

o e In O
’ 208t e, U Ty
The corresponding distance travelled during time { by the wedge is

b =§udz=§§"§;’_ﬂ£ [1 __axp( —2_:152%: }]

Since m == p,8L% where p, is the density of the wedge material (electron plasma),hence

D, [N
[

T = Theer (3.1)

Formula (3.1} provides a simple estimate of dimensions of the crack generated by the
supersonic motion of the wedge, and is a unifying characteristic of the mechanical model of
supersonic fracture.

PR P P o et

Remark on three-dimensional problems. Clusters of electron plasma are of finite
dimensions in all directions. Hence three-dimensional problems of the supersonic motion of
slender wedges of particular cross~gections {(such as triangular, ciroular, etc.) in an elastic
body, are of interest. The most important of these are the problems of supersonic mathematic~
al branch cuts, in connection with which arises the problem of determination of corack dstach-
ment from the wedge profile, typical of hydrodynamic detached flows.
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